AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname \qquad
Forename(s) \qquad
Candidate signature \qquad

A-level PHYSICS

Paper 3

Section B Turning points in physics

Thursday 14 June 2018 Morning

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Section B

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- | Figure 1 shows apparatus which can be used to determine the specific charge of an electron.

Figure 1

Electrons are emitted from the filament and accelerated by a potential difference between the filament and anode to produce a beam. The beam is deflected into a circular path by applying a magnetic field perpendicular to the plane of the diagram.

0	1	1

\qquad

| 0 | 1 | $\mathbf{2}$ Table 1 shows the data collected when determining the specific charge of the electron |
| :--- | :--- | :--- | :--- | by the method shown in Figure 1.

Table 1

potential difference V that accelerates the electrons	320 V
radius r of circular path of the electrons in the magnetic field	4.0 cm
flux density B of the applied magnetic field	1.5 mT

Show that the specific charge of the electron is given by the expression $\frac{2 V}{B^{2} r^{2}}$
[2 marks]

0	1	3
3		

specific charge of the electron $=$
$\mathrm{C} \mathrm{kg}^{-1}$
Question 1 continues on the next page

0	1	4
4	At the time when Thomson measured the specific charge of the particles in cathode	

State how Thomson's result for the specific charge of each particle within a cathode ray compared with that for the hydrogen ion and explain what he concluded about the nature of the particles.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 2 shows a modern version of the apparatus used by Hertz to investigate the properties of electromagnetic waves. Electromagnetic waves are continuously emitted from a dipole transmitter. The electromagnetic waves are detected by a dipole receiver.
An oscilloscope is used to display the amplitude of the detected signal at the dipole receiver.

Figure 2

Figure 3 shows the same apparatus when the dipole receiver has been rotated through an angle of 90°

Figure 3

0	2	1
Sketch a graph on Figure		
4	to show how the amplitude detected by the dipole	

Start your graph from the position shown in Figure 2.

Figure 4

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ Maxwell derived the equation $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$ | for the speed c of electromagnetic waves, |
| :--- | :--- | :--- | :--- | where μ_{0} is the permeability of free space and ε_{0} is the permittivity of free space.

Explain, using a suitable calculation, why this equation led to the conclusion that light is an electromagnetic wave.

| 0 | 3 |
| :--- | :--- | electromagnetic radiation of a single wavelength. Electrons emitted from the metal surface are collected by terminal \mathbf{T} in the photocell. This results in a photocurrent, \boldsymbol{I}, which is measured by the microammeter.

Figure 5

The potential divider is adjusted until the photocurrent is zero.
The potential difference shown on the voltmeter is 0.50 V
The work function of the metal surface is 6.2 eV

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{1}$ Calculate the wavelength, in nm , of the electromagnetic radiation incident on the |
| :--- | :--- | :--- | metal surface.

\qquad nm
$\begin{array}{lll}\mathbf{0} & \mathbf{3} .2 \text { The intensity of the electromagnetic radiation is increased. No adjustment is made to }\end{array}$ the potential divider.

The classical wave model and the photon model make different predictions about the effect on the photocurrent.

Explain the effect on the photocurrent that each model predicts and how experimental observations confirm the photon model.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | $\mathbf{3}$ The potential divider in Figure 5 is returned to its original position so that a |
| :--- | :--- | :--- | :--- | photocurrent is detected by the microammeter.

The potential divider is then adjusted to increase the potential difference shown on the voltmeter.

Explain why the photocurrent decreases when this adjustment to the potential divider is made.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 continues on the next page

0	3	4
4		

A, B and C.

Table 2 shows, for each of the three surfaces, a voltmeter reading V and the corresponding photocurrent \boldsymbol{I}. The same source of electromagnetic radiation is used throughout the investigation.

Table 2

	$\boldsymbol{V} / \mathbf{V}$	$\boldsymbol{I} / \boldsymbol{\mu} \mathbf{A}$
Metal surface \mathbf{A}	1.5	56
Metal surface \mathbf{B}	2.5	56
Metal surface \mathbf{C}	2.5	78

Which conclusion about the relationship between the work functions of \mathbf{A}, \mathbf{B} and \mathbf{C} is correct?

Tick (\checkmark) the correct box.

$$
A>B>C
$$

\square
A $<$ B $<$ C

$$
B>A>C
$$

$$
\mathrm{B}<\mathrm{A}<\mathrm{C}
$$

Figure 6 shows a diagram of the Michelson-Morley interferometer that was used to try to detect the absolute motion of the Earth through the ether (æther).

Light from the monochromatic source passes through the semi-silvered glass block and takes two different paths to the viewing telescope. The two paths, PM_{1} and PM_{2}, are the same length. Interference fringes are observed through the viewing telescope.

Figure 6

It was predicted that when the interferometer was rotated through 90° the fringe pattern would shift by 0.4 of the fringe spacing.

| 0 | 4 | 1 |
| :--- | :--- | :--- | an absolute motion relative to the ether.

Your answer should include:

- an explanation of why a shift of the fringe pattern was predicted
- a comparison of the results of the experiment to the prediction
- the conclusion about the Earth's absolute motion through the ether.
[6 marks]
\qquad
Extra space is available on the next page
\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ The Michelson-Morley experiment provides evidence for one of the postulates of

Einstein's theory of special relativity.
State this postulate
[1 mark]
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ State the other postulate of Einstein's theory of special relativity. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad

Question 4 continues on the next page

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{4}$ One consequence of the special theory of relativity is length contraction. |
| :--- | :--- | :--- |

Experimental evidence for length contraction is provided by the decay of muons produced in the atmosphere by cosmic rays.

Figure 7 shows how the percentage of the number of muons remaining in a sample changes with time as measured by an observer in a frame of reference that is stationary relative to the muons.

Figure 7

\qquad

In a particular experiment, muons moving with a velocity $0.990 c$ travel a distance of 1310 m through the atmosphere to a detector.

Determine the percentage of muons that reach the detector.

END OF QUESTIONS

